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An impact oscillator is a periodically driven system that hits a wall when its amplitude exceeds a critical
value. We study impact oscillations where collisions with the wall are with near-zero velgcéying im-
pacts. A characteristic feature of grazing impact dynamics is a geometrically converging series of transitions
from a nonimpacting period-1 orbit to peridd-orbits that impact once per period wii=1,2,... . In an
experiment we explore the dynamics in the vicinity of these period-adding transitions. The experiment is a
mechanical impact oscillator with a precisely controlled driving strength. Although the excitation of many
high-order harmonics in the experiment appeared unavoidable, we characterize it with only three parameters.
Despite the simplicity of this description, good agreement with numerical simulations of an impacting har-
monic oscillator was found. Grazing impact dynamics can be described by mappings that have a square-root
singularity. We evaluate several mappings, both for instantaneous impacts and for impacts that involve soft
collisions with a yielding wall. As the square-root singularity appears persistent in the reduction of the dy-
namics to mappings, and because impact dynamics appears insensitive to experimental nonidealities, the
characteristic bifurcation scenario should be observed in a wide class of experimental systems.

PACS numbd(s): 05.45—a, 46.40—-f, 46.55+d

[. INTRODUCTION eration near impact can be considered constant and the
square root is simply the relation between elapsed time and
An impact oscillator is a periodically driven oscillator that traveled distance in systems with constant acceleration. The
impacts with a wall when its excursion exceeds a criticalsquare-root singularity and the associated extreme stretching
value. In between impacts its dynamics can be linear, but iof phase space near the point of grazing impact lead to
inherits a strong nonlinearity from the mere presence of théaighly nontrivial dynamics.
wall. In its simplest guise, the impact can be an instanta- As the bifurcation properties of a mapping are analyzed
neous velocity reflection with a coefficient of restitution rep- much more readily than those of a differential equation, the
resenting the energy loss during impact. A grazing impact istudy of these mappings led to the discovery of important
an impact with zero velocity. Grazing impacts sensitivelyorganizing principles in the dynamics of impact oscillators.
depend on initial conditions: small variations in initial con- A near-exhaustive examination of the bifurcations of the
ditions can cause the oscillator to cross the border betweelordmark map[2] was reported by Chiret al. [4]. This
colliding and noncolliding orbits. work has inspired our research. The bifurcation structure
The model system that we consider is sketched in Fig. 1found is exemplary for a more general class tadrder-
A harmonic oscillator with masm and spring constariK is  collision bifurcationsthat arise in nonsmooth systerf&.
driven sinusoidally with amplitudé and frequencyw. Its One of the predictions if¥] is the occurrence of a series
linear damping is gauged by When its deflection becomes of transitions from a nonimpacting period-p4) orbit to
larger thard, it collides with the wall. This wall may actually periodM (py) orbits withM=3,4, ... . Wewill call this a
be elastic. Between impacts, the equation of motion for theseries of period-addingtransitions. TheM-periodic orbits
oscillator is have one impact per period and are termekimalperiodic
orbits. As will also be explained in Sec. | C, these transitions
M+ vX+K(x+d)=F cog wt+ ¢). (1)

Impact oscillators display a perplexing variety of nonlin-
ear behavior such as chaos, subharmonic resonances, and
period doublingg1], but a strong organizing principle has
been lacking for a long time. Grazing impacts are special
because near grazing orbits the dynamical system can be
reduced to iterations of a mapping. Nordmag{ showed
how to reach such a reduced description for arbitrary peri-

odi_cally driven systems that. are close to grazing. The deri- g 1. The physical system studied in this paper. The mass
vation of mappings for special values of the system paramot the oscillator can collide with a yielding wall. We assume that
eters was described if8]. In impact maps, a borderline the massless wall is attached with frictionless springs to the fixed
separates nonimpacting from impacting orbits. For a nonimworld. The resilience of the wall is determined by the stiffness of
pacting orbit the map is linear, but it has a square-root sinthese springs. The wall position in rest is»t0 and the rest
gularity for an impacting orbit. Close to grazing, the accel-position of the oscillating mass at= —d.
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are intimately tied to the square-root singularity of impact A. The harmonic oscillator
dynamics[5]. It is tempting to draw the analogy with the
universal series of period doublings that exist in maps with an
guadratic nonlinearity.

No practical physical system can display a singularity,
and the question is whether period adding transitions can be
observed in a real experiment. In practical systems, colli-
sions will be with a more or less yielding wall, which in- _ ) ) 5 ~
duces a time delay at impact. Noninstantaneous impacts mayhere  7=2mv/imew, Q°=47°K/mw®, and F
also result from the excitation of high-order modes of the=4m*F/mw?d; from now on we will drop the tilde on the
oscillator, which is hard to avoid in an experiment. The quesiransformed quantities. In the case of collisions with a flex-
tion is if such time delays will effectively smooth the singu- ible wall the harmonic forcé)?x is replaced byK(x),
larity, thus essentially altering the bifurcation structure of the
impact oscillator. To answer these important questions, we X+ vX+K(x)=F cog2nt+ ¢), 3)
have in[7] rederived grazing impact maps for collisions,
with both perfectly rigid and yielding walls. It turns out that with
in almost all cases the square-root singularity persists in the
mapping. QZ(X-F 1), x=<0

The challenge of the experiment is to see if a singularity K(x)= Q2(x+1+Tx), x>0,
survives the intrinsic nonidealities of the experimental setup.

In this paper we will describe the results of experimentsyhere is the ratio of the spring constant of the resilient
aimed at measuring the geometrically progressing periodpg|l to that of the oscillator. The noncolliding oscillator just

If we scale time with the period of the external driving
d the deflectiox with the distancal to the wall, Eq.(1)
becomes in dimensionless units

X+ 7%+ Q%(x+1)=F coq2mt+ ¢), 2

4

adding transitionp,—~py, M=23, ... . Wewill focus on  grazes the wall when the driving amplitude and phase are
underdamped oscillators as these are most relevant to me-

chanical experiments. A transition from the nonimpacting Fo=[(Q%—47%)%+47%%]"2 and

period-1 orbit to ap; orbit with one grazing impact was

experimentally observed by Thompson, Bishop, and Foale ¢=cos‘1[(92—4772)/Fg],

[9]; our highest observed period M =10. In order to see

such high-order resonances, precise control of the excitatiofhich we use to define a normalized driving strength
is negdgd. Our setup is Qescrlbed in Sec. .II. We will seek Q(F_Fg)/,:g' It is also convenient to introduce a normal-
description of our experimental oscillator in terms of only ;,qq driving frequency¢ as ¢=fT, where T=2m/[Q2
three parameters: the periddof its free oscillations, its lin- — (v12)?]¥2is the period of the free damped oscillations of
ear dampingx, a”‘?' .the coefficient of restitution, which he gscillator and = w/27 is the excitation frequency.
represents the collision energy loss. In Sec. Il we show that In the case of an infinitely stiff wall[{ =), the mass

numerical simulations of an impacting harmonic oscillatoryiy ot penetrate the wall but reflect instantaneously. When

with these parameters as input agree well with the experig,, positionx(t) comes to the boundary at, sdythe veloc-
HS/ reflects ask(tg+) = —rx(tp-), wherer is the restitution

ment. Favorable agreement between experiments and n
coefficient andk(ty-) =wv. is the collision velocity. For this

merical simulationgbut in a different region of parameter
space was also found by Shail0], who studied impact case Nordmark2] was able to reduce the dynamics of the
Gfmpact oscillator to that of a simple two-dimensional map-

oscillations with hard impacts and who coped with the sam
experimental nonidealities, such as the excitation of man)bing
high-order modes. '

In order to explore the dynamics away from grazing im- Xpt1=aXptyatp, it x.<0 )
pacts, we have scanned phase space in the vicinity of maxi- Yni1=— ¥Xn N
mal periodic orbits. Here also we find favorable agreement _
i ; ; - . Xnt1=—VXnFYntp, .
with the result of numerical simulations. In these experi- ntl \/—” YoTp if x,>0, (6)

— 2
ments, a large variety of periodic and chaotic states was en- Ye1= =¥ Xn
countered. This emphasizes that impact dynamics is ex-
tremely rich, but it also stresses the necessity of bringin
order to this area. As we argued, such order is now provide
by the reduction of the dynamical system to an iterated ma

A first account of our experimental results appearefBin . . ;
The differential equation Eq.l) of an impact oscillator the Ime_ar map Eq(S) applies, yvhereas .qu) describes the
ynamics in the case that an impact will occur[op,t,, . 1].

can be reduced to a mapping for orbits that remain close t . .
grazing ones. As the reduction is highly nontrivial, it is im- or o_scnlators described by E@2), the parameters of the

portant to test the prediction of the mappings quantitativel)m . e . .
against those of the original differential equation, especiall;}!aI equation. This is done most conveniently in terms of the

if one moves away from strictly grazing orbits. Such a com-t'me.z'1 operatoP Whi.Ch connects states of the noncolliding
parison will be made in Sec. IV for the sequence of periooOSCIIIator at successive stroboscopic times,

addings. It turns out that mappings, both for instantaneous
collisions with a rigid wall and for soft collisions with a _
yielding wall, capture the essence of impact dynamics. S~ S

herex,, andy, are transformed coordinates of the,X)
pace at stroboscopic times=n, and wherep is the bifur-
cation parameter that measures the distance to the point of
grazing impact. If no collision occurs betweepandt,, 1,

(7)

1 ( s,e51—s,e%2 eS2—es1

S1S,(e%1—e%2)  s,e%2—s,e’1)’



2032 de WEGER, van de WATER, AND MOLENAAR PRE 62

where  s;=%1(—v+1¥¥—40? and s,=%(—v  There are slight but significant differences between the maps
—\»?—40?). The parametera and y of the collisionless  Egs.(5),(6) and Eqs(10),(11); those were discussed exten-
linear map Eq(5) are in a simple way related to the eigen- Sively in[7]. For example, the sign factor in E(L2), which

valuese® ande%2 of P as[4] is absent in the Nordmark map E@®), is needed to explain
period-1 impacting orbits. In Sec. IV we will argue that the
a=eS1+ eSzZZe—”’zcosr(%\/m), term proportional tax,, in Eq. (11), which is also absent in
the Nordmark map, is needed to correctly predict the loss of
y=eSixe2=e"", (8)  stability of maximal periodic orbits due to an additional im-
pact.
which expresses the fact that the eigenvalue® ofiust be The map Eqs(10)—(12) applies to impacts with an infi-

the same as those of the Jacobian of G&g. The parameters nitely stiff wall (I'=«). In [7] we also derived a map for
of the nonlinear collision map E@6) and the scaling of the yielding walls with a finite value of'. In the case of a resil-
bifurcation parametep can only be obtained from a full ient wall, collisions may be soft or hard. The parameter that

nonlinear analysis, in particular, distinguishes these two cases fis=rv Y20 /472 where
v.=X(tg-) is the collision velocity. Collisions are hard if
l1-aty ) B>1; then the map Eq910)—(12) applies. Collisions are

P gm2(1+1)2P%, " soft if B<1; then the same map Eq4.0)—(12) applies, but
now with the substitutiom — —r. Therefore, both hard and
which for underdamped oscillators4<4?) can be writ-  soft collisions involve the square-root singularity. Although
ten in terms of the reduced driving frequengyas we were unable to find a mapping that pertains to the inter-
mediate case, we believe that the square-root behavior ap-
_ 1-aty . plies to all collisions.
P ye(1+r)2sir(2ale) 7 In the soft maps, the restitution rule is usedd$y+)

] . . ) =rx(tg-) (=rv.). An exception to the square-root rule
The mapping contained in Eqé5) and (6) also applies to  arises for soft collisions that are perfectly elastie=(1). It
periodically driven systems other than the harmonic oscillagppears that in this case the presence of the wall can be
tor but in these cases the quantitative association of the magympletely ignored to within the order of the approximations
parameters with the physical parameters is much more diffigsed. Accordingly, these impact oscillations have a com-

cult. The presence of the square root in E6) is a key  pletely different bifurcation structure.
aspect of the mapping; it causes the Jacobian to be singular

at x,=0. We will explain below that it gives rise to the

characteristic period-adding bifurcations that will be studied ) _ _ ) ) )
in this paper. A numerical simulation of the differential equation Egs.

The reduction of grazing impact dynamics described by 43).(4) in the presence of grazing impacts needs to be done
differential equation to a simple mapping rests on the asWwith care. It is absolutely crucial not to miss boundary cross-
sumptions that the actual orbit stays close to the nonimpactnds ofx(t). A practical and efficient way is to compute the
ing grazing orbit, that the driving amplitude stays close to thePositionsx(t) and velocitiesk(t) at a small number of dis-
grazing amplitude=, (|o|<1), and that the collision veloc- Crete pointdy, ...t in each drive period, either by using the
ity remains small fp.|<1). For strictly grazing orbits, the €xact solution[Eq. (7)] or by numerically integrating the
map is exact. Careful analysis is needed to derive mappingdfferential equation. Boundary crossings are found by
that are also valid in the vicinity of grazing orbits, and thatchecking if the seriex(t,),... x(tx) crossex=0. If so, the
can be used to explore the bifurcation structure of grazingrecise crossing instant is determined to machine precision
impact oscillators. using a zero finding procedure. At this point, the switch of

In [7] we rederived mappings from the differential equa- Ed. (4) can be made.
tion Eq.(3), but now also allowing for a finite stiffness of the ~ Checking the computed positiongt;),... X(ty) is not
wall. Our derivation has followed a slightly different route sufficient, as a boundary crossing may go unnoticed. There-

B. Numerical integration

than in[2], with for the infinitely stiff wall the result fore, we also keep track of the turning points where the ve-
locity Xx=0. The turning instant can be found by looking
Xnt1= aXptYot+p, . for zero crossings ok(t,),... . x(ty) and pinpointing the pre-
Yni1=— YXn if X, =<0, (10 cise turning point using a zero finding procedure. At each
_ turning point it is checked ifx(t;)>0, which signifies a
Xn+1= = C1VXn+ CXn T Yot p, if x,=0, boundary crossing.
Yn+17 CaXn 1 The numberk of discrete points in the regions<0 and

x>0 is taken proportional t6) andT"'*2Q), respectively. If
the differential equations are numerically integrated, zeros
can be found efficiently and accurately using a trick de-

c;=sgnPyy), (12)  scribed by Haon[12].

The coefficientx,, ¢,, andcs are now given by

Co=a—2(1+1)Pyt (1+1)2P3, C. Period addings

- A periodM maximal periodic orbit impacts only once in
C3=(1+2r)y—(1+r1)P, everyM periods of the driving. When the stroboscopic phase
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FIG. 2. Period-adding bifurcations. Shown gre—p,, transi-
tions (M=2) at various values of the normalized excitation fre-
quencyé. The p, orbit is the nonimpacting oscillatofa) Stability
tongue in thep,£ plane. At its upper boundary th®, orbit loses

stability to statesSthrough a second impact. At the lower boundary
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=ps. After perusing some of the states at even larger values
of p, the bifurcation parameter is again slowly decreased
until the impacts cease pt= — py<0. As Fig. 2 illustrates,
the appearance of measured bifurcation diagrams depends on
where one crosses the stability diagram of Fi¢g).2For
scaled frequencie§; < ¢<¢, [Fig. 2(c)], the stateS that is
encountered first gi=0 is already beyond the upper bound-
ary of the stability tongue. In this case the periddnaximal
orbit is encountered only in a downward scarpof he state

S may actually be disconnected from the perMderbit so

that in practice the maximafl-periodic orbit can be reached
only by disturbing the oscillator. Zero velocity collisions are
encountered ap=—py . When &<é<é; [Fig. 2(c)] the
periodM maximal periodic orbit is the first state encountered
atp=0.

The way that these apparently hysteretic maximal period
orbits arise in impact systems with a square-root singularity
can be understood simply. To this aim we write the map in
matrix form,

the py— p; transition is observed in a quasistatic downward scan

of p. (b) Bifurcation diagram of &, orbit obtained in a quasistatic
upward and downward scan of at excitation frequencieg,<¢
<¢5. The dashed line indicates the unstapjebranch. The shaded
area indicates the transition to stat&s with a second impact(c)
Same agb), but now§;<£<é,.

is chosen such that>0 is impacting anc&k<0 is not(as it is

Xne1=AXpt+p if x,<0, (13
X
xn+1=C(\/(;)+an+p if x,>0, (14

with p the column vector with componeni®,0). If we
choose as cycle elemeri the one withx;>0, a maximal

in the mapping the sequence of oscillator positions satisfiesPeriodM cycle has one application of the nonlinear map Eq.

X1<Xp<r <Xy 1<0<xpy . PeriodM maximal periodic

(14) andM — 1 applications of the linear map E@L3). The

orbits form a nice testing ground for a reduced description irfycle conditionxy . 1=X; then gives

terms of a mapping. These orbits exhibit a geometric pro-

gression towardV =« in which the intervals of stability

become geometrically narrower and in which the impact ve-

locity vanishes a8l —oo. The lower the period, therefore,

M—2
AM=Y(Cx,e,+Bx; +p) + igo (A)i)l’lel (15

the more the assumptions of the map reduction are chalvith e, the unit vector(1,0). They component of the vector

lenged.

equation Eq(15) is linear and can be used to solve fgr;

A period adding in the underdamped oscillator is athe solution can then be substituted in the first component of
saddle-node bifurcation, that is, the simultaneous creation dfq. (15). The resulting equation is quadratic ifx,. If it has

a stable and an unstable peribdmaximal periodic orbit at
a negative value op=—pyu<0 [4,11]. This situation is
sketched in Fig. 2. At large negatiyethe wall is not felt,

two real positive solutions, one of them turns out to be
stable, the other one unstable. This is the situation drawn in
Figs. 2b) and 4c). At p=0 the unstable root collides with

and the oscillations are free. In a slow quasistatic upwar(ﬂhe origin, and forp>0 a sing|e relevant root remains. The

scan ofp, collisions with the wall occur first gp=0. The
system then traces the stable perMdsranches. Whep is

lower boundary of théM-resonance tongue is defined by the
coalescence of the two roots/X;),, at p=—py .

subsequently decreased, these branches are followed to nega-

tive p until the pointo= —py,, where the stable and unstable

branches meet. At this point, which lies on the lower stability

boundary, the oscillator impacts with zero velocity.

In a maximal periodv orbit the excursion of the oscilla-
tor increases steadily during —1 periods of the excitation
until it collides at theMth cycle and is thrown back to nega-
tive x. At the upper boundary of the stability diagram of Fig.
2 the periodM orbit loses stability through an additional
impact at time M —1)T; we will denote this orbit apy,.

II. EXPERIMENT

The aim of the experiment is to measure precise bifurca-
tion diagrams near grazing impact, and to explore the geo-
metric convergence of series of period-adding bifurcations.
To reach this goal, a precise control of the frequency and
amplitude of the excitation is needed.

The experiment is sketched in Fig. 3. It consists of a
U-shaped, brass leaf spring that is excited horizontally by

The general shape of the stability tongue of a maximameans of a large electromagnetic exciter on which it is

M-periodic orbit is sketched in Fig.(&).

In our experiment, the bifurcation paramegers quasis-
tatically increased from the nonimpacting state<(Q) to p
=0 where impacts first occur. Whanis increased further,
the maximal periodic orbit will collide a second time, which
marks the upper boundary of the region of existence at

mounted. The beam has length 13 cm, width 2 cm, and is
made of 0.2 mm thick material; its clamped ends are 2 cm
apart. The U shape suppresses undesired torsional motion of
the beam. When the deflection of the beam is large enough,
a ceramic ball that is attached to the beam collides with a
hardened steel plate on the exciter. These materials are cho-
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Laser beam 7548, which is driven by a computer. When the measured
F sin (1) v amplitude differs from the.rleq_uired yalue, the amplitud.e of
<> the sine wave on the amplifier input is changed appropriately
_ « with a small fixed stefrelative size smaller than>610°),
x h i which is smaller than the background noise. It needs to be so
] ' Y Fri small because amplitude changes induce transient behavior
x\%\s ringe counter of the oscillator that may irreversibly change the dynamical

state of the impacting beam. This is especially important
Laser beam since we are interested in hysteretic transitions.

The deflection of the leaf spring is measured using a laser
beam that is reflected off the upper part of the beam onto a
position-sensitive detect¢SL 76-1, UDT Sensors Ing.For
small beam deflections, the output voltage is linear in the
beam displacement. The beam deflection is measured syn-
Position sensitive detector chronously with the excitation at a fixed phase delay. Thus,

subsequent measurements are points in a stroboscopic phase

FIG. 3. Experimental setup. A U-shaped leaf spring is broughtp|ane_
into oscillation by horizontally oscillating its support. At a large It turned out that the frequency of free oscillatiofg
enough forcing amplitudg, the attached mass impacts with a stop. =T-1 of the beam varied with the ambient temperature at a

Collisions take place between a hard ceramic ball and a hardenei%te of 0.05 Hz/ °C. Therefore, the temperature of the entire

steel plate. The a_mplltude of the ex_uter is mt_aasured |nterfero_rnetr|éetup was controlled to within 0.05°C, so tHatremained
cally. The deflection of the leaf spring is registered by reflecting a L 3 e
laser beam off the spring onto a position-sensitive diode. constant to within 2.5 10™ ° Hz. The temperature sensitivity

is caused by the temperature dependent properties of the

sen such that the wear due to frequent impacts is negligiblél2mMPing material and by the thermal expansion of the beam.
so that the distance between the stop and the equilibriurf€cause the beam is excited close to resonance, the ampli-

position of the beam is constant. A problem in this experi-lude iS strongly dependent on the driving frequency. There-
ment is the excitation of many higher harmonic modes uporfOre; it is important to keef,, constant in precise experi-
impact. To increase the damping of these, adhesive tape f8€Nts. The resulting overall stability of the experiment is
glued on the inner side of the spring and on the side thaguch that the excitation amplitude at the first grazing bifur-
faces the exciter. The upper side of the spring is kept shinfation, which is the reference p0|.nt_for the .blfurcatlon dia-
for the measurement of the deflection of the spring using &"ams, could be reproduced to within the pickup ndisa
laser beam. pm) of the interferometer

The harmonic displacement of the beam support is real- 'ne experimental oscillator differs from a simple har-
ized by feeding a sine wave from a precision waveform syn{nonic oscillator with two degrees of freedom in the sense

thesizerNF Electronic Instruments, Model 1930, with a fre- that it is a continuous system, so that many modes may be
quency accuracy of better thanx30 ) to the power excited (transverse modes as well as torsional onedere

amplifier that controls a large, electromagnetic exditéng each mod(_a has its_ own charact_e_ristic resonance frequency
Dynamical Systems 200Since the exciter is large with re- and damp|_ng coefficient. In addition, the _relatlon between
spect to the beam, the effect of the beam motion on th&he deflection of the beam and the restoring force may be
motion of the exciter is small. nonlinear due to its peculiar, albeit useful, geometry. We will

The dynamics of the impacting beam is explored througmevertheless descripe the oscillator with just_three param-
bifurcation diagrams where the driving amplitude is used a§t€"s: namely, the eigenfrequency of the undriven beam, its
the bifurcation parameter. Since the dynamical state depend@MmPing, and the restitution coefficient. An extension with a
very sensitively on the excitation amplitude, it is of crucial fourth parameter describing the resilience of the contact
importance to measure and control the amplitude of the extPon collision will be considered briefly.
citer motion very accurately. The driving amplitude is mea- ASSuming that the beam response is represented by Eq.
sured by making use of a Michelson interferometer, which), the periodT and the damping coefficient can be mea-
comprises a small He-Ne lasémavelengthh = 632.8 nm) s_ured ina stralghtforward manner from the decaying oscilla-
and a photodiode. The amplitude of the exciter motion oS Of the unexcited beam,
inferred from the number of interference fringes counted per
period of the driving. This assumes that the motion is purely x(t)~e Mcog2wt/T+ ¢). (16)
sinusoidal with a frequency equal to the driving frequency.
The accuracy of the amplitude measurement is determined 5.
by the pickup of environmental mechanical vibrations. This! N parameters and Q° in Egs. (3) and (4) then follow
background noise amounts to a fringe-passing frequency dfivially as
approximately 80 Hz, corresponding to an uncertainty in the
amplitude measurement smaller than Q1. For the excita- \ 2
tion amplitudes that are typically used, this amounts to an V=5 and QZ=(?
uncertainty better than 1 in 2500.

The control of the driving amplitude is achieved with the
help of a 12 bit digital voltage dividefAnalog Devices AD  with the parameters of the impact mapping

2+ V2
4
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_ _ _ ) FIG. 5. Dots: decay of the extrema of a measured damped os-
FIG. 4. Dots: duration of successive periods in a measured dejllation shown in the inset of Fig. 4. Dashed line: fit of exponential
caying oscillation. Each period length is measured from three sucdecay with decay constant=1.78 .

cessive zero crossings of the signal. The full line is a linear fit. It
intersects the time axis at 41.41 ms, which we take as the period of Figure 6 shows a typical time trace of the deflection of an

the beam. Inset: decaying oscillation from which both the periodundriven beam that was released from such a height that after

and damping constartin Fig. 5 below were measured. about half an oscillation a single impact occurred. It is obvi-
ous that a multitude of higher-order modes is excited upon

20 impact. An estimate of the effective coefficient of restitution

y=e " anda= 2y1’2005< —) was reached as follows. At long times, when the higher-order
¢ modes have damped out, it is possible to represent the data

with Eq. (16) and determine the phase in a least squares

in terms of the reduced driving frequenéy fT with f the procedure. The resulting expression %gt) can then be ex-

physical driving frequency. The damped oscillations areffapolated back to the instant of impact. From Fig. 6 it is
measured by suddenly switching off the exciter when theclear that the impact occurs very close to the turning point of

beam is in a stationary, nonimpacting orbit that nearly hitsthe extrapolated solution. We therefore conclude that the co-

the constraint. The instantaneous position of the beam igfficient of restitution is close to 0 and we take 0. Further
measured with a sample frequency of 6 kHz during 2.33 s.Support for this effective value will be presented below. The
After subtraction of the equilibrium position, the period of €xcitation of higher-order modes is caused by the deforma-
the oscillations is found from the zero crossings of the signalfion of the beam at impact. In the simple model of Fig. 1, this
which are determined precisely bjnean interpolation. Fig- 1S equivalent to a collision with a yielding wall. A similar
ure 4 shows a typical result for the period lengths. The timéwo-spring model for hard collisions was studied both ex-
increments are observed to decrease with the amplitude ¢erimentally and theoretically by Sha0].
the decaying oscillation, indicating a weak nonlinearity of We study the dynamics of the impacting beam by means

the beam. Because grazing impact dynamics corresponds & bifurcation diagrams in which the forcing amplitude is
large beam deflections, we take thectiveperiod T of free ~ Used as control parameter and the forcing frequency is kept

oscillations as the extrapolation of the time increments in .
Fig. 4 to time 0. This give§=41.41ms.

The coefficient of damping is found from the maxima
and minima of the measured relaxation curve. The value of 1
each extreme is computed by fitting a parabola to the 17 data
points that lie symmetrically around it. In Fig. 5 these values
are plotted versus time. The damping coefficient is found
from the exponential decay,=1.780+0.005s .

We will describe the collisions in our experiment by the
coefficient of restitution model, which assumes that at impact
the oscillator rebounds with a reduced velocity. The energy
loss at impact is expressed by the coefficient of restitution: if I
v, is the collision velocity, the rebound velocity isrv, -1k
with O=<r=1. This is an admittedly crude description. In our
case the energy dissipation at impact is caused by the exci-
tation of many high-order modes which are quickly damped,
for example, by the radiation of sound. We therefore inter- FiG. 6. Full line: time trace of the undriven beam which impacts
pretr as aneffectivecoefficient of restitution, which may at t=0.13s. Dashed line: fit of damped oscillations in the time
differ from the one associated with collisions between a ceinterval 0.25<t<1.3s where the secondary oscillations have
ramic ball and hardened steel. damped out. The fit is extrapolated back to the instant of impact.

deflection (arb. unils)
(=]

1 i
0.10
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E : meed I © % oo ] Pm/2 p per periodat the vertical dashed line is
[ oood Z Z oo 1 F° © ® 0 © o - clearly observed in the bifurcation diagram as a sharp change in one
o T © 0 o 5 of the measured positions at=0.042 in the upward scan of The
F $ 83 00 . 1 [ g § © o excitation frequency i$=21.35 Hz.
- °*¢ 3 r © o ]
C ME I ER ¢ o ® o 7
T AR B ST T T creasing period lengths, the scale of the driving amplitude
0664 0666 0668 0670 0526 0527 0.528 0.529 scan rapidly diminishes. The highest observed period
Ezcitation amplilude (mm) (Pm=10) is at the limit of our experimental resolution and

) ) ) ) ) stability. For this figure théreduced excitation frequency:
_ FIG._?. Experimental bifurcation diagrams pfl<—>p_M transi- is set somewhere in the intervé< ¢< &, [Figs. 2a) and
tions with M=3,4,5,6,8,10 for(a) through (f), respectively. The 2(b)] so that the transition g6=0 is alwaysp;—py . AS

closed dots are for the upward scan of the excitation amplitude; th% .
) X . an also be observed, the apparent hysteresis may vary
open circles are for the downward scan. For this experiment the

period of the free swinging beam T5=40.80+ 0.02 ms and damp- W"qu' In all cases t_he amphtudt_a scans stop bef(.Jr.e the
ing A=2.1+0.055 L. The excitation frequencies are=20.90 periodM maximal orbit loses stability through an additional

21.50, 22.20, 22.60, 23.05, and 23.40 Hz@rthrough(f), respec- IMPact and becomes a peridd-orbit with two impacts
tively. Pwm2)- . . .

The transitionpy— pwy2 is found from the time traces of
constant. A measurement of the bifurcation diagram ighe recorded spring deflection. It gives rise to the character-
started at a small driving amplitude with the beam in a stalstic jump in the bifurcation diagram which is illustrated for
tionary, nonimpacting orbit. The driving amplitude is then
increased with small steps until the desired value is reached.
As we are interested in hysteretic transitions, we make sure
that the amplitude changes strictly monotonically. The step
size in the amplitude can be as small as 18, but it is
larger when performing scans over large amplitude intervals.
The oscillator is allowed to settle for approximately 100
forcing cycles during which the amplitude is maintained at
its setpoint. Next, the beam deflection is registered for ap- =
proximately 80 driving cycles. The phase of this strobo-
scopic measurement relative to the sinusoidal forcing signal
is chosen such that the branches of the subharmonic orbits
that appear in the diagrams do not overlap. The amplitude of
forcing is increased up to approximately 10% above the ex-
citation amplitude of the first grazing bifurcation. It is sub-
sequently decreased until the impacting motion disappears A
and the oscillator settles in a nonimpacting orbit, which may 18 19 20 (12) 21 2
be at an excitation amplitude well below the excitation am- / iz

plitude of the first grazing collision. FIG. 9. Open circles: measured boundaries of stability tongues
of maximal periodM orbits, whereM =2-7. At the lower bound-
IIl. EXPERIMENTAL RESULTS ary the transitiorpy,— p; is observed in a downward scan @f At
the upper boundary a second imp@gi— py/ occurs. The mea-
An overview of measured period-adding tranSitionSsured upper and lower boundary points for em tongue are
p1<pm from the nonimpacting state to maximal periodic connected by dashed lines. Full lines: tongues as computed from the
orbits with periodM =3 to 10 is shown in Fig. 7. For in- differential equation foiT;=41.5ms,\=1.78s?, andr=0.
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FIG. 10. Measured bifurcation diagrams near maximal periodic FIG. 11. Measured bifurcation diagrams near maximal periodic

orbits withM =2,3. The diagram is composed from amplitude scansorb'ts with M=3-7. The diagram is composed from amplitude

at discrete frequencies. The dots at the largesire the maximal scans at discrete frequencies. The dots at the largass the maxi-

. . . o al amplitude in each scan. The black regions are stability tongues
amplitude in each scan. The black regions are stability tongues o . . . .

. o . . of maximalpy, orbits; the gray regions are chaotic states.
maximalp,, orbits; the gray regions are chaotic states.

P— " ; ways resolved in the experiment. The tip can extend as much
the ps— p4yp transition in Fig. 8. The additional impact oc- hat . ; i

. . . : .as 10% below the driving amplitude where impacts first oc-
curs at the turning point that immediately precedes the Pricur in a smooth upward scan of Figures 10 and 11 also

mary impact, as this turning point is closest to the wall. At. ; . X .
the bifurcation, the motion between these two impact§||UStrate that the boundaries of the regions of maximal peri

changes most, and the change in the corresponding strob?d'c orbits are slightly more complicated than was stated so

scopic branch of the bifurcation diagram is largest. The otheﬁar'bl-rer"\;el_;g:gg?:negLtﬁecgiggggtgg a;]f;tlg ré)sfd;g%efgpf un-
branches are affected less as they are registered after té&% (£<&, in Fig. 2. For scaled frequencies> £, there is

relatively hard primary impact often a transition to chaos at=0 which yields to the

_In Fig. 9 the .measure.d hystergsis and secondary.bifurcq\-/l_cycle at some positive value of. Of course, this part of
tion of the maximal periodic orbits are compared with thethe boundary was missed in the computed stability diagrams.

stability tongues computed ffo”? the differential equation The occurrence of an additional collision for increasing
Egs.(3) and (4). In the computation we have used the pa-\yhich signifies the upper boundary of the stability tongue,
rameter value§ =41.5ms,\=1.78s", andr=0. The pe- .4 ejther lead to @y, orbit (at the low-frequency side of
riod of free y|brat|0nsT=41.5 ms is chosen slightly larger pe tongug or turn directly into chaos at the high-frequency
than the period T=41.41ms) that was measured from theside. When the driving amplitude is further increased, the
decaying oscillations. In this way the frequency windows inp,, , orbit changes into chaos. The regions in &e param-
which the maximal orbits are observed fit well with the pre-eter plane where thg,,, orbit is found form a geometrically
dicted ranges. The frequency where the computed maximaonverging sequence foll =4—7, analogous to the stability
orbitsM=2,3 ... arefound depends strongly on the used tongues of the maximaly, orbits.
of the model. The damping constant=1.78s! is taken Chaotic motion is observed between maximal orbits and
from the relaxation measurements. The width of the stabilitycan also be hysteretic. For example, fat21.35Hz an
tongues depends very sensitively on the restitution coeffiM =4 maximal periodic orbit bifurcates to chaos vipg,»
cientr. The tongues shrink to zero width as»1. The best orbit in the upward scan af, whereas in the downward scan
fit between the theory and experiment was obtainedrfor the chaotic motion bifurcates directly into tipg, orbit. Ap-
=0, which agrees with the effective value othat was es- parently, a chaotic attractor and a periodic orbit coexist in
timated from time traces of impacting orbits in Sec. Il. The some regions of parameter space, and it depends on how this
conclusion is that the observed bifurcation sequence can lregion is approached, and possibly on the level of mechani-
reproduced well using only three parameters to describe theal disturbances, on which attractor the oscillator will settle.
experiment. We emphasize that we view these parameters as In order to further illustrate the richness of the bifurcation
effective values, reflecting the influence of higher-order structure near grazing, we present in Figs. 12 and 13 mea-
modes that are excited at impact. sured bifurcation plots at a driving frequenty 21.60 and
The experimentally observed dynamics in the vicinity of 21.97 Hz, respectively. We contrast the measured bifurca-
the first grazing bifurcation and beyond is summarized intions with the results of numerical simulations. The frequen-
Figs. 10 and 11. The windows in which maximal periodic cies correspond to the transitions,-s—p; and py-s
orbitspy, are found cover a large part of parameter space and-p,, respectively. However, in the latter case these maxi-
have a similar shape foM=4-7 (theM =2 and 3 windows mal periodic orbits cannot be reached through smooth scans
are only partly measurgdwhereas their size decreases whenof the driving amplitude and it is necessary to disturb the
M increases. The upper boundary due to a second impaoscillator. In Fig. 12 the first impacting state encountered at
meets the lower boundary at the low-frequency side of ther=0 is theM =32 maximal orbit, with two impacts per pe-
maximal M-periodic stability tongue. The very tip is not al- riod. This state turns into chaos at largerwhich yields to



2038 de WEGER, van de WATER, AND MOLENAAR PRE 62

T ™ T T T T T
! ]
),
10} c (a) -
] ' I. _ 25
' : ‘e, e
o : Y R E
= yaven =
s | et g
2 350 ' (EPNREEE .
- i b .
E r ; ll| e .g
= L | A ~
' ' ."II N 2
g i . ! 2
s b e ! S 20
S 301 ! | I 4 s “
=Y ! | =
= | Co 3
= [ :
NS
it
| ,'
o
R5F | a
1 ) L L )
0
& 8 -
-2
1 1 !

FIG. 13. Bifurcation diagrams of the impact oscillator at a driv-
ing frequencyf =21.97 Hz.(a) Experiment. In the upward scan of
the driving amplitude the statgs;;;, chaos, andy,, are encoun-
tered; in the downward scan the sequencejg, chaos,ps,
chaos,pg,. (b) Computed bifurcation diagram with a similar se-
guence of states as observed in the experiment. In the experiment

M=5 state and theps—p, transition are reached only on the the impacting states at negativecould be reached only by hitting

downward scan, once the upper boundary due to second impad e oscillator; in the numerical simulation this was done by sud-
has been passe,d at—0.18. denly settingx to a large value.

FIG. 12. Bifurcation diagrams of the impact oscillator at a driv-
ing frequencyf =21.60 Hz.(a) Measured diagram. The dashed line
indicates thep,— p4, transition. (b) Computed bifurcation dia-
gram. The first impacting state encounteredoatO is the M
=5/2 maximal orbit, with two impacts per period. This state turns
into chaos at larges, which yields to theM =4 periodic orbit. The

the M =4 periodic orbit. TheM =5 state and th@s— p; the experimental one. Both experiment and simulation have

transition are reached only on the downward scan, once th&€ disconnecte@y - and chaotic states at<0; they
upper boundary due to second impacts has been passedSh@re they, s orbit followed by a large region of chaos and
o=—0.18. Both experiment and numerical simulation dis-the P-4 cycle. Details differ, however, especially the struc-
play the same course of events, but fine details in the simuure of the large chaotic state at>0.043. We conclude that
lation for o e [ —0.006,0.0035 remain unresolved in the ex- the richness of the observed bifurcations near grazing is quite
periment. Of course, the shape of the phase diagram is alseell captured by the numerical simulation, which models the
determined by the stroboscopic phase, which cannot be conexperiment with only thre¢effective) parameters.
pared for the two cases. We emphasize that our experiment is far from ideal as
Starting from the nonimpacting state in Fig. 13, a smoothmany high-order modes are excited upon impact. Appar-
upward scan of the driving amplitude leads to the small chaently, transitions near grazing orbits are forgiving about this
otic attractor atoe=0, which in turn is followed by an nonideality. A possible explanation is the presence of long
M =5 maximal periodic orbit and chaos. In the subsequentime delays between subsequent impacts, which get longer as
downward scan, the nonimpacting state is reached again 8t increases. This lets higher modes damp out. For states that
o=0. The maximalM =6 periodic orbit with the chaotic have a more rapid succession of impacts, for exanmplg,
attractor to which it bifurcates through a second impact carperiodic states, we found larger discrepancies between mea-
be reached only by hitting the oscillator. Exactly the samesured and computed bifurcation diagrams. In these cases the
phenomenon is found in the numerical bifurcation diagramtime for higher modes to decay is shorter. We conclude that
where the hit is done by setting to a large value. The grazing bifurcations are not sensitive to experimental detail
overall structure of the computed diagram is very similar toand are therefore aniversalphenomenon.
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IV. TESTING GRAZING IMPACT MAPS

The power of grazing impact maps is the reduction of
grazing dynamics to the application of a map. A key feature
of these mappings is the presence of a square-root singular-
ity. It was shown by us that such a singularity survives soft
impacts with a yielding wal[7].

The details of these mappings, in particular the relation of
their coefficients to the parameters of the physical system
and the relation between the bifurcation paramgtand the
reduced driving amplituder, depend on the details of the
analysis of grazing orbits in the differential equation. This
analysis is not a trivial task. Therefore, it is interesting to
make a quantitative comparison between the prediction of
mappings and the solutions of the differential equation. We
will make this comparison for the stability tongues of the
sequence of maximal periodic orbits that was also studied
experimentally. In our comparison we have not exhaustively
scanned parameter space, but instead have used the physical
parameters of the experimenT£41.5ms,\=1.78s1, r
=0). The predictions of the soft map will be tested against
the differential equation using=10 andr=0.5.

Finding the stability tongues in the maps was done in a
simple numerical scheme using E@.5). Once the stable
impacting root at the lower boundaps~= — p), of the reso- ,
nance tongue is located, it is followed for increasingntil a [/
second collision at iterat®! —1 occurs. The upper boundary |/
can then be determined accurately using a zero finding pro- (T T R
cedure. We have used a similar procedure for finding the 075 0.80 0.865 090 095
stability boundaries of the resonance tongues of the differen-
tial equation Eq(3). When collisions are with a stiff wall, a FIG. 14. Comparison of stability tongues of maximal periodic
simple analytical expression exists for the lower boundaryorbits in the mapping and the differential equation. The parameters
[13]. The upper boundary was found analogously to that ofised areT=41.50ms, A\=1.78s?, and r=0. Shown are the
the map. For tracing the stability boundaries of maximaltongues withM=2 (leftmos) to M =10 (rightmos}. (a) Dotted
M-periodic orbits in the differential equation for the soft line: stability boundaries computed from the Nordmark map Egs.
wall, we have not sought analytical solutions but determined5),(6). Full line: as computed from the differential equation E3).
the boundaries in an experimental fashion by using ampli{b) Same aga), but now the dotted line is the prediction of a map
tude scans at many frequencies. In all cases the stabilitat was derived by ugEgs.(10),(11)]. The upper boundary of the
boundaries are expressed in terms of thduceddriving ~M=2 tongue is missed in this map.

strengtho, which is the relevant physical variable. it the tongues computed from the differential equation Eq.
A comparison between the maximisl-periodic stability (3). Clearly, in some regions of parameter space the map-
tongues computed from the Nordmark map E@$,(6) and  pings are closer to the original dynamics than in other re-
those computed directly from the differential equation Ed.gions.
(3) is shown for hard collisions in Fig. 14). The Nordmark Maximal periodic resonance tongues for collisions with a
map predicts the lower boundary of the stability tonguesyielding wall are shown in Fig. 15. In this case the Nordmark
quite well, but it grossly overestimates the driving amplitudemap does not apply, and we compare the prediction of the
at which the additional impact occurs. The comparison withmap Eqgs.(10),(11) with the result of the numerical simula-
the map derived by u$Egs. (10),(11)] is shown in Fig. tion of Eq. (3). The parameters used afe=41.50 ms,\
14(b). At the used value =0, a more favorable agreement =1.78s %, andr=0.5, andl’=10. We have not used so-
with the differential equation is found. phisticated path following techniques, but the boundaries of
We have argued that for increasing periddthe condi- the M-periodic resonance tongues in the differential equation
tions for deriving maps become increasingly favorable, angvere found from simple scans of the driving amplitude,
the agreement between the map and the differential equatidRuch as in the experiment. .
result should improve. This is observed for the map Egs, The question of whether a map is soft or hard depends on
(10),(11), but not for the Nordmark map Eq5),(6). Most Fhe parameteB=ruv "0 /47*. Soft (;0II|S|ons are'thg case
probably this difference is caused by the term proportional tdf <1, and the map Eqs10),(11) with the substitutiorr
x,, in Eq. (10), wich is absent in the Nordmark map. For — — @pplies. Hard collisions are the casesi#-1 and the

increasing restitution coefficientthe width of the tongues in M&P remains unchanged. The map E(<),(11) does not

: : : apply in intermediate cases, so collisions must be either hard
the differential equation becomes small, but the map Eqsc')r soft. The problem is that in a scan of the bifurcation dia-

(10),(11) predicts that tongues witM <M disappear alto-  gram from small to largé, the impact velocity . decreases
gether M~4 for r=0.5). This is in obvious disagreement and collisions may turn from hard to soft. Let us suppose that

‘l s
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FIG. 15. Comparison of stability tongues of maximal periodic  FIG. 17. Bifurcation diagram of the map Edq40),(11) for hard
orbits in the mapping and the differential equation for collisions collisions at a driving frequenc§=21.60 Hz ¢=0.8964). Ato
with a yielding wall. The parameters used afe=41.50ms,N  ~—0.014 the transitiops— p; can be observed. The structure of
=1.78s*, andr=0.5. Shown are the tongues wiM=2 (left-  the diagram can be compared to Fig. 12 as it displays the same
mos} to M = 10 (rightmos}. Dotted line: prediction of the map Egs. sequence of states, but we point out a change of the horizontal
(10),(12) for soft collisions with a soft wall(with the changer scale.
——r). The symbols are computed from the differential equation
Eqg. (3) with I'=10. Open circles: lower boundary of resonance . L
tongues. Closed dots: upper boundary. map Eqs(10),(11) display “overhang:” at some driving fre-
quencies bottM and M — 1 periods are stable, with thd
during a collision only the force between the wall and the—1 tongue hanging over thkl tongue. In these cases the
mass changes and that the other forces remain constai-periodic cycles are inaccessible in experiments where the
Then, for soft impacts the time of residenséin the wall is ~ €Xcitation amplitude is smoothly varied. Therefore, the over-
a linear function of the collision velocity and it is a constanthangs are not completely resolved in the numerical simula-
for hard collisions. tion of the differential equatiotwhere stability boundaries
Figure 16 shows the dependence of the time ddlapn ~ Wwere found “experimentally}. The agreement between the
the collision velocityv, for two scaled frequencies, ong ( tongues computed from the soft map and those computed
=0.805) near a low-order resonandd € 3) in Fig. 15, the from the differential equation is quite reasonable.
other one £€=0.95) neaM = 10. The time delays were reg- At large driving amplitudes where we find orbits far be-
istered while scanning a bifurcation diagram. Clearly, theyond grazing ones, the validity of the maps is obviously
M =3 tongue is not yet soft, so the soft map does not strictlychallenged. Still, the general bifurcation structure is repro-
apply here and the discrepancy between the stability boundluced remarkably well by maps. Figure 17 shows iterates of
aries of the map and the differential equation is largest. ~ theé map Eqs(10),(11) for collisions with a hard wall at a

The tongues that were computed from the soft impacflfiving frequencyf=21.60 Hz. The map displays a similar
sequence of states as the differential equation in Fig. 12. For

T increasingo we find in both cases a period-10 orbit &t
=0, followed by a period-5 cycle, chaos, and a period-4
I orbit; with of course at negative the ps— p; transition. For

0.06 7 large driving strengths a shift i is apparent. For the pa-
I | rameters used, the Nordmark map E@s,(6) predicts a sce-
I | nario that qualitatively disagrees with both experiment and
e 4 differential equation.
= We have modeled the experiment with an effective resti-
tution coefficientr =0. For such completely dissipative col-
- lisions, the wall resilience, of course, does not matter. The
0.02 7 guestion is if the experiment can be modeled using a larger
0 1 which is more realistic for the instantaneous collision, but
| ] allowing for a finite wall stiffness. We recall that the main
Y Y S S reason to choose=0 is to match the width of the computed
-2 -1 0 M-tongues in Fig. 9 with those of the experiment. At larger
% the tongues become too narrow, but this can be cured by
FIG. 16. Time delay experienced in a collision with a soft wall allowing for a finite wall stiffness. Our preliminary conclu-

as a function of the collision velocity. Closed dots: scaled frequencysion is that this procedure does not lead to satisfactory agree-
£=0.85 near aM =3 maximal periodic orbit. Open circlest ~ ment with the experiment. Soft impacts result in a bifurca-

=0.95 nearM = 10. Soft collisions are the caseAft depends lin-  tion diagram that is essentially different from hard collisions,
early onv, ; this is apparently not yet the case nearlthe3 orbit. ~ for example, in comparison with Fig. 14, the resonance




PRE 62 GRAZING IMPACT OSCILLATIONS 2041

tongues of soft collisions in Fig. 15 have been shifted torestitution coefficientr <1. For perfectly elastic soft colli-
lower frequencies. sions with a soft wall, however, the square root vanishes and
collisions need to become hard again to restore it. It is there-
V. CONCLUSION fore necessary to consider more realistic impact models. An

interesting testing ground would be collisions on a mesos-

Grazing impact bifurcations are the consequence of @gpjc scale in atomic force microscopg6]. Such atomic
square-root singularity. We have demonstrated that an eXmpact oscillators will be studied in a forthcoming publica-
periment, despite its nonidealities, can be effectively modyjgn.

eled as a singular system. We have indicated why these non-
idealities, such as the multimode character of impacts, do not
spoil such a description. Because of this singularity, and the
associated strong distortion of phase space, low-velocity im- We thank Doug Binks for many insightful discussions and
pacts may lead to richer dynamics than hard collisiongor the program to compute the stability boundaries of the
[14,15. resonance tongues of the differential equation. We also thank

In the context of maps we have shown explicitly that theJan Niessen for technical assistance. We gratefully acknowl-
square root also survives soft impacts with a soft wall. In thisedge financial support by the Nederlandse Organisatie voor
case it is essential to allow for a discontinuity in terms of aWetenschappelijk OnderzogkWO).
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