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Grazing impact oscillations
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An impact oscillator is a periodically driven system that hits a wall when its amplitude exceeds a critical
value. We study impact oscillations where collisions with the wall are with near-zero velocity~grazing im-
pacts!. A characteristic feature of grazing impact dynamics is a geometrically converging series of transitions
from a nonimpacting period-1 orbit to period-M orbits that impact once per period withM51,2, . . . . In an
experiment we explore the dynamics in the vicinity of these period-adding transitions. The experiment is a
mechanical impact oscillator with a precisely controlled driving strength. Although the excitation of many
high-order harmonics in the experiment appeared unavoidable, we characterize it with only three parameters.
Despite the simplicity of this description, good agreement with numerical simulations of an impacting har-
monic oscillator was found. Grazing impact dynamics can be described by mappings that have a square-root
singularity. We evaluate several mappings, both for instantaneous impacts and for impacts that involve soft
collisions with a yielding wall. As the square-root singularity appears persistent in the reduction of the dy-
namics to mappings, and because impact dynamics appears insensitive to experimental nonidealities, the
characteristic bifurcation scenario should be observed in a wide class of experimental systems.

PACS number~s!: 05.45.2a, 46.40.2f, 46.55.1d
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I. INTRODUCTION

An impact oscillator is a periodically driven oscillator th
impacts with a wall when its excursion exceeds a criti
value. In between impacts its dynamics can be linear, bu
inherits a strong nonlinearity from the mere presence of
wall. In its simplest guise, the impact can be an instan
neous velocity reflection with a coefficient of restitution re
resenting the energy loss during impact. A grazing impac
an impact with zero velocity. Grazing impacts sensitive
depend on initial conditions: small variations in initial co
ditions can cause the oscillator to cross the border betw
colliding and noncolliding orbits.

The model system that we consider is sketched in Fig
A harmonic oscillator with massm and spring constantK is
driven sinusoidally with amplitudeF and frequencyv. Its
linear damping is gauged byn. When its deflection become
larger thand, it collides with the wall. This wall may actually
be elastic. Between impacts, the equation of motion for
oscillator is

mẍ1n ẋ1K~x1d!5F cos~vt1f!. ~1!

Impact oscillators display a perplexing variety of nonli
ear behavior such as chaos, subharmonic resonances
period doublings@1#, but a strong organizing principle ha
been lacking for a long time. Grazing impacts are spe
because near grazing orbits the dynamical system can
reduced to iterations of a mapping. Nordmark@2# showed
how to reach such a reduced description for arbitrary p
odically driven systems that are close to grazing. The d
vation of mappings for special values of the system para
eters was described in@3#. In impact maps, a borderlin
separates nonimpacting from impacting orbits. For a non
pacting orbit the map is linear, but it has a square-root s
gularity for an impacting orbit. Close to grazing, the acc
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eration near impact can be considered constant and
square root is simply the relation between elapsed time
traveled distance in systems with constant acceleration.
square-root singularity and the associated extreme stretc
of phase space near the point of grazing impact lead
highly nontrivial dynamics.

As the bifurcation properties of a mapping are analyz
much more readily than those of a differential equation,
study of these mappings led to the discovery of import
organizing principles in the dynamics of impact oscillato
A near-exhaustive examination of the bifurcations of t
Nordmark map@2# was reported by Chinet al. @4#. This
work has inspired our research. The bifurcation struct
found is exemplary for a more general class ofborder-
collision bifurcationsthat arise in nonsmooth systems@6#.

One of the predictions in@4# is the occurrence of a serie
of transitions from a nonimpacting period-1 (p1) orbit to
period-M (pM) orbits with M53,4, . . . . Wewill call this a
series ofperiod-adding transitions. TheM-periodic orbits
have one impact per period and are termedmaximalperiodic
orbits. As will also be explained in Sec. I C, these transitio

FIG. 1. The physical system studied in this paper. The masm
of the oscillator can collide with a yielding wall. We assume th
the massless wall is attached with frictionless springs to the fi
world. The resilience of the wall is determined by the stiffness
these springs. The wall position in rest is atx50 and the rest
position of the oscillating mass atx52d.
2030 ©2000 The American Physical Society
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PRE 62 2031GRAZING IMPACT OSCILLATIONS
are intimately tied to the square-root singularity of impa
dynamics@5#. It is tempting to draw the analogy with th
universal series of period doublings that exist in maps wit
quadratic nonlinearity.

No practical physical system can display a singular
and the question is whether period adding transitions can
observed in a real experiment. In practical systems, co
sions will be with a more or less yielding wall, which in
duces a time delay at impact. Noninstantaneous impacts
also result from the excitation of high-order modes of t
oscillator, which is hard to avoid in an experiment. The qu
tion is if such time delays will effectively smooth the sing
larity, thus essentially altering the bifurcation structure of t
impact oscillator. To answer these important questions,
have in @7# rederived grazing impact maps for collision
with both perfectly rigid and yielding walls. It turns out tha
in almost all cases the square-root singularity persists in
mapping.

The challenge of the experiment is to see if a singula
survives the intrinsic nonidealities of the experimental set
In this paper we will describe the results of experime
aimed at measuring the geometrically progressing per
adding transitionsp1↔pM , M52,3, . . . . Wewill focus on
underdamped oscillators as these are most relevant to
chanical experiments. A transition from the nonimpacti
period-1 orbit to ap1 orbit with one grazing impact wa
experimentally observed by Thompson, Bishop, and Fo
@9#; our highest observed period isM510. In order to see
such high-order resonances, precise control of the excita
is needed. Our setup is described in Sec. II. We will see
description of our experimental oscillator in terms of on
three parameters: the periodT of its free oscillations, its lin-
ear dampingl, and the coefficient of restitutionr, which
represents the collision energy loss. In Sec. III we show
numerical simulations of an impacting harmonic oscilla
with these parameters as input agree well with the exp
ment. Favorable agreement between experiments and
merical simulations~but in a different region of paramete
space! was also found by Shaw@10#, who studied impact
oscillations with hard impacts and who coped with the sa
experimental nonidealities, such as the excitation of m
high-order modes.

In order to explore the dynamics away from grazing i
pacts, we have scanned phase space in the vicinity of m
mal periodic orbits. Here also we find favorable agreem
with the result of numerical simulations. In these expe
ments, a large variety of periodic and chaotic states was
countered. This emphasizes that impact dynamics is
tremely rich, but it also stresses the necessity of bring
order to this area. As we argued, such order is now provi
by the reduction of the dynamical system to an iterated m
A first account of our experimental results appeared in@8#.

The differential equation Eq.~1! of an impact oscillator
can be reduced to a mapping for orbits that remain clos
grazing ones. As the reduction is highly nontrivial, it is im
portant to test the prediction of the mappings quantitativ
against those of the original differential equation, especia
if one moves away from strictly grazing orbits. Such a co
parison will be made in Sec. IV for the sequence of per
addings. It turns out that mappings, both for instantane
collisions with a rigid wall and for soft collisions with a
yielding wall, capture the essence of impact dynamics.
t
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A. The harmonic oscillator

If we scale time with the period of the external drivin
and the deflectionx with the distanced to the wall, Eq.~1!
becomes in dimensionless units

ẍ1 ñ ẋ1V2~x11!5F̃ cos~2pt1f!, ~2!

where ñ52pn/mv, V254p2K/mv2, and F̃
54p2F/mv2d; from now on we will drop the tilde on the
transformed quantities. In the case of collisions with a fle
ible wall the harmonic forceV2x is replaced byK(x),

ẍ1n ẋ1K~x!5F cos~2pt1f!, ~3!

with

K~x!5H V2~x11!, x<0

V2~x111Gx!, x.0,
~4!

where G is the ratio of the spring constant of the resilie
wall to that of the oscillator. The noncolliding oscillator ju
grazes the wall when the driving amplitude and phase ar

Fg5@~V224p2!214p2n2#1/2 and

f5cos21@~V224p2!/Fg#,

which we use to define a normalized driving strengths
5(F2Fg)/Fg . It is also convenient to introduce a norma
ized driving frequencyj as j5 f T, where T52p/@V2

2(n/2)2#1/2 is the period of the free damped oscillations
the oscillator andf 5v/2p is the excitation frequency.

In the case of an infinitely stiff wall (G5`), the mass
will not penetrate the wall but reflect instantaneously. Wh
the positionx(t) comes to the boundary at, say,t0 the veloc-
ity reflects asẋ(t01)52rẋ(t02), wherer is the restitution
coefficient andẋ(t02)5vc is the collision velocity. For this
case Nordmark@2# was able to reduce the dynamics of th
impact oscillator to that of a simple two-dimensional ma
ping.

xn115axn1yn1r,
yn1152gxn

if xn<0, ~5!

xn1152Axn1yn1r,
yn1152gr 2xn

if xn.0, ~6!

where xn and yn are transformed coordinates of the (x,ẋ)
space at stroboscopic timestn5n, and wherer is the bifur-
cation parameter that measures the distance to the poin
grazing impact. If no collision occurs betweentn and tn11 ,
the linear map Eq.~5! applies, whereas Eq.~6! describes the
dynamics in the case that an impact will occur on@ tn ,tn11#.
For oscillators described by Eq.~2!, the parameters of the
mapping can be expressed explicitly in those of the differ
tial equation. This is done most conveniently in terms of t
time-1 operatorP which connects states of the noncollidin
oscillator at successive stroboscopic times,

P5
1

s22s1
S s2es12s1es2 es22es1

s1s2~es12es2! s2es22s1es1
D , ~7!
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2032 PRE 62de WEGER, van de WATER, AND MOLENAAR
where s15 1
2 (2n1An224V2) and s25 1

2 (2n
2An224V2). The parametersa and g of the collisionless
linear map Eq.~5! are in a simple way related to the eige
valueses1 andes2 of P as @4#

a5es11es252e2n/2
cosh~ 1

2 An224V2!,

g5es13es25e2n, ~8!

which expresses the fact that the eigenvalues ofP must be
the same as those of the Jacobian of Eq.~5!. The parameters
of the nonlinear collision map Eq.~6! and the scaling of the
bifurcation parameterr can only be obtained from a ful
nonlinear analysis, in particular,

r5
12a1g

8p2~11r !2P12
2 s, ~9!

which for underdamped oscillators (n2,4V2) can be writ-
ten in terms of the reduced driving frequencyj as

r5
12a1g

2gj2~11r !2 sin2~2p/j!
s.

The mapping contained in Eqs.~5! and ~6! also applies to
periodically driven systems other than the harmonic osci
tor but in these cases the quantitative association of the
parameters with the physical parameters is much more d
cult. The presence of the square root in Eq.~6! is a key
aspect of the mapping; it causes the Jacobian to be sing
at xn50. We will explain below that it gives rise to th
characteristic period-adding bifurcations that will be stud
in this paper.

The reduction of grazing impact dynamics described b
differential equation to a simple mapping rests on the
sumptions that the actual orbit stays close to the nonimp
ing grazing orbit, that the driving amplitude stays close to
grazing amplitudeFg (usu!1), and that the collision veloc
ity remains small (uvcu!1). For strictly grazing orbits, the
map is exact. Careful analysis is needed to derive mapp
that are also valid in the vicinity of grazing orbits, and th
can be used to explore the bifurcation structure of graz
impact oscillators.

In @7# we rederived mappings from the differential equ
tion Eq.~3!, but now also allowing for a finite stiffness of th
wall. Our derivation has followed a slightly different rou
than in @2#, with for the infinitely stiff wall the result

xn115axn1yn1r,
yn1152gxn

if xn<0, ~10!

xn1152c1Axn1c2xn1yn1r,
yn115c3xn

if xn>0,

~11!

The coefficientsc1 , c2 , andc3 are now given by

c15sgn~P12!, ~12!

c25a22~11r !P221~11r !2P22
2 ,

c35~112r !g2~11r !2P22
3 .
-
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There are slight but significant differences between the m
Eqs. ~5!,~6! and Eqs.~10!,~11!; those were discussed exte
sively in @7#. For example, the sign factor in Eq.~12!, which
is absent in the Nordmark map Eq.~6!, is needed to explain
period-1 impacting orbits. In Sec. IV we will argue that th
term proportional toxn in Eq. ~11!, which is also absent in
the Nordmark map, is needed to correctly predict the loss
stability of maximal periodic orbits due to an additional im
pact.

The map Eqs.~10!–~12! applies to impacts with an infi-
nitely stiff wall (G5`). In @7# we also derived a map fo
yielding walls with a finite value ofG. In the case of a resil-
ient wall, collisions may be soft or hard. The parameter t
distinguishes these two cases isb5rvcG

1/2V/4p2 where
vc5 ẋ(t02) is the collision velocity. Collisions are hard i
b@1; then the map Eqs.~10!–~12! applies. Collisions are
soft if b!1; then the same map Eqs.~10!–~12! applies, but
now with the substitutionr→2r . Therefore, both hard and
soft collisions involve the square-root singularity. Althoug
we were unable to find a mapping that pertains to the in
mediate case, we believe that the square-root behavior
plies to all collisions.

In the soft maps, the restitution rule is used asẋ(t01)
5rẋ(t02) (5rvc). An exception to the square-root rul
arises for soft collisions that are perfectly elastic (r 51). It
appears that in this case the presence of the wall can
completely ignored to within the order of the approximatio
used. Accordingly, these impact oscillations have a co
pletely different bifurcation structure.

B. Numerical integration

A numerical simulation of the differential equation Eq
~3!,~4! in the presence of grazing impacts needs to be d
with care. It is absolutely crucial not to miss boundary cro
ings of x(t). A practical and efficient way is to compute th
positionsx(t) and velocitiesẋ(t) at a small number of dis-
crete pointst1 ,...,tk in each drive period, either by using th
exact solution@Eq. ~7!# or by numerically integrating the
differential equation. Boundary crossings are found
checking if the seriesx(t1),...,x(tk) crossesx50. If so, the
precise crossing instant is determined to machine preci
using a zero finding procedure. At this point, the switch
Eq. ~4! can be made.

Checking the computed positionsx(t1),...,x(tk) is not
sufficient, as a boundary crossing may go unnoticed. Th
fore, we also keep track of the turning points where the
locity ẋ50. The turning instantst t can be found by looking
for zero crossings ofẋ(t1),...,ẋ(tk) and pinpointing the pre-
cise turning point using a zero finding procedure. At ea
turning point it is checked ifx(t t).0, which signifies a
boundary crossing.

The numberk of discrete points in the regionsx,0 and
x.0 is taken proportional toV and G1/2V, respectively. If
the differential equations are numerically integrated, ze
can be found efficiently and accurately using a trick d
scribed by He´non @12#.

C. Period addings

A period-M maximal periodic orbit impacts only once i
everyM periods of the driving. When the stroboscopic pha
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PRE 62 2033GRAZING IMPACT OSCILLATIONS
is chosen such thatx.0 is impacting andx,0 is not~as it is
in the mapping!, the sequence of oscillator positions satisfi
x1,x2,¯,xM21,0,xM . Period-M maximal periodic
orbits form a nice testing ground for a reduced description
terms of a mapping. These orbits exhibit a geometric p
gression towardM5` in which the intervals of stability
become geometrically narrower and in which the impact
locity vanishes asM→`. The lower the periodM, therefore,
the more the assumptions of the map reduction are c
lenged.

A period adding in the underdamped oscillator is
saddle-node bifurcation, that is, the simultaneous creatio
a stable and an unstable period-M maximal periodic orbit at
a negative value ofr52rM<0 @4,11#. This situation is
sketched in Fig. 2. At large negativer the wall is not felt,
and the oscillations are free. In a slow quasistatic upw
scan ofr, collisions with the wall occur first atr50. The
system then traces the stable period-M branches. Whenr is
subsequently decreased, these branches are followed to
tive r until the pointr52rM , where the stable and unstab
branches meet. At this point, which lies on the lower stabi
boundary, the oscillator impacts with zero velocity.

In a maximal period-M orbit the excursion of the oscilla
tor increases steadily duringM21 periods of the excitation
until it collides at theM th cycle and is thrown back to nega
tive x. At the upper boundary of the stability diagram of Fi
2 the period-M orbit loses stability through an additiona
impact at time (M21)T; we will denote this orbit aspM /2 .
The general shape of the stability tongue of a maxim
M-periodic orbit is sketched in Fig. 2~a!.

In our experiment, the bifurcation parameterr is quasis-
tatically increased from the nonimpacting state (r,0) to r
50 where impacts first occur. Whenr is increased further
the maximal periodic orbit will collide a second time, whic
marks the upper boundary of the region of existence ar

FIG. 2. Period-adding bifurcations. Shown arep1↔pM transi-
tions (M52) at various values of the normalized excitation fr
quencyj. The p1 orbit is the nonimpacting oscillator.~a! Stability
tongue in ther,j plane. At its upper boundary thepM orbit loses
stability to statesS through a second impact. At the lower bounda
the pM→p1 transition is observed in a quasistatic downward sc
of r. ~b! Bifurcation diagram of ap2 orbit obtained in a quasistati
upward and downward scan ofr at excitation frequenciesj2,j
,j3 . The dashed line indicates the unstablep2 branch. The shaded
area indicates the transition to states~S! with a second impact.~c!
Same as~b!, but nowj1,j,j2 .
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5rs. After perusing some of the states at even larger val
of r, the bifurcation parameter is again slowly decreas
until the impacts cease atr52rM<0. As Fig. 2 illustrates,
the appearance of measured bifurcation diagrams depend
where one crosses the stability diagram of Fig. 2~a!. For
scaled frequenciesj1,j,j2 @Fig. 2~c!#, the stateS that is
encountered first atr50 is already beyond the upper boun
ary of the stability tongue. In this case the period-M maximal
orbit is encountered only in a downward scan ofr. The state
S may actually be disconnected from the period-M orbit so
that in practice the maximalM-periodic orbit can be reache
only by disturbing the oscillator. Zero velocity collisions a
encountered atr52rM . When j2,j,j3 @Fig. 2~c!# the
period-M maximal periodic orbit is the first state encounter
at r50.

The way that these apparently hysteretic maximal per
orbits arise in impact systems with a square-root singula
can be understood simply. To this aim we write the map
matrix form,

xn115Axn1r if xn<0, ~13!

xn115CSAxn

0 D1Bxn1r if xn.0, ~14!

with r the column vector with components~r,0!. If we
choose as cycle elementx1 the one withx1.0, a maximal
period-M cycle has one application of the nonlinear map E
~14! andM21 applications of the linear map Eq.~13!. The
cycle conditionxM115x1 then gives

AM21~CAx1e11Bx11r!1S (
i 50

M22

~A! i D r5x1 , ~15!

with e1 the unit vector~1,0!. They component of the vecto
equation Eq.~15! is linear and can be used to solve fory1 ;
the solution can then be substituted in the first componen
Eq. ~15!. The resulting equation is quadratic inAx1. If it has
two real positive solutions, one of them turns out to
stable, the other one unstable. This is the situation draw
Figs. 2~b! and 2~c!. At r50 the unstable root collides with
the origin, and forr.0 a single relevant root remains. Th
lower boundary of theM-resonance tongue is defined by th
coalescence of the two roots (Ax1)1,2 at r52rM .

II. EXPERIMENT

The aim of the experiment is to measure precise bifur
tion diagrams near grazing impact, and to explore the g
metric convergence of series of period-adding bifurcatio
To reach this goal, a precise control of the frequency a
amplitude of the excitation is needed.

The experiment is sketched in Fig. 3. It consists of
U-shaped, brass leaf spring that is excited horizontally
means of a large electromagnetic exciter on which it
mounted. The beam has length 13 cm, width 2 cm, and
made of 0.2 mm thick material; its clamped ends are 2
apart. The U shape suppresses undesired torsional motio
the beam. When the deflection of the beam is large enou
a ceramic ball that is attached to the beam collides wit
hardened steel plate on the exciter. These materials are

n
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2034 PRE 62de WEGER, van de WATER, AND MOLENAAR
sen such that the wear due to frequent impacts is neglig
so that the distance between the stop and the equilibr
position of the beam is constant. A problem in this expe
ment is the excitation of many higher harmonic modes up
impact. To increase the damping of these, adhesive tap
glued on the inner side of the spring and on the side
faces the exciter. The upper side of the spring is kept sh
for the measurement of the deflection of the spring usin
laser beam.

The harmonic displacement of the beam support is r
ized by feeding a sine wave from a precision waveform s
thesizer~NF Electronic Instruments, Model 1930, with a fr
quency accuracy of better than 531026) to the power
amplifier that controls a large, electromagnetic exciter~Ling
Dynamical Systems 200!. Since the exciter is large with re
spect to the beam, the effect of the beam motion on
motion of the exciter is small.

The dynamics of the impacting beam is explored throu
bifurcation diagrams where the driving amplitude is used
the bifurcation parameter. Since the dynamical state depe
very sensitively on the excitation amplitude, it is of cruc
importance to measure and control the amplitude of the
citer motion very accurately. The driving amplitude is me
sured by making use of a Michelson interferometer, wh
comprises a small He-Ne laser~wavelengthl5632.8 nm)
and a photodiode. The amplitude of the exciter motion
inferred from the number of interference fringes counted
period of the driving. This assumes that the motion is pur
sinusoidal with a frequency equal to the driving frequen
The accuracy of the amplitude measurement is determ
by the pickup of environmental mechanical vibrations. T
background noise amounts to a fringe-passing frequenc
approximately 80 Hz, corresponding to an uncertainty in
amplitude measurement smaller than 0.3mm. For the excita-
tion amplitudes that are typically used, this amounts to
uncertainty better than 1 in 2500.

The control of the driving amplitude is achieved with th
help of a 12 bit digital voltage divider~Analog Devices AD

FIG. 3. Experimental setup. A U-shaped leaf spring is brou
into oscillation by horizontally oscillating its support. At a larg
enough forcing amplitudeF, the attached mass impacts with a sto
Collisions take place between a hard ceramic ball and a hard
steel plate. The amplitude of the exciter is measured interferom
cally. The deflection of the leaf spring is registered by reflectin
laser beam off the spring onto a position-sensitive diode.
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7548!, which is driven by a computer. When the measur
amplitude differs from the required value, the amplitude
the sine wave on the amplifier input is changed appropria
with a small fixed step~relative size smaller than 531025),
which is smaller than the background noise. It needs to be
small because amplitude changes induce transient beha
of the oscillator that may irreversibly change the dynami
state of the impacting beam. This is especially import
since we are interested in hysteretic transitions.

The deflection of the leaf spring is measured using a la
beam that is reflected off the upper part of the beam on
position-sensitive detector~SL 76-1, UDT Sensors Inc.!. For
small beam deflections, the output voltage is linear in
beam displacement. The beam deflection is measured
chronously with the excitation at a fixed phase delay. Th
subsequent measurements are points in a stroboscopic p
plane.

It turned out that the frequency of free oscillationsf b
5T21 of the beam varied with the ambient temperature a
rate of 0.05 Hz/ °C. Therefore, the temperature of the en
setup was controlled to within 0.05 °C, so thatf b remained
constant to within 2.531023 Hz. The temperature sensitivit
is caused by the temperature dependent properties of
damping material and by the thermal expansion of the be
Because the beam is excited close to resonance, the am
tude is strongly dependent on the driving frequency. The
fore, it is important to keepf b constant in precise experi
ments. The resulting overall stability of the experiment
such that the excitation amplitude at the first grazing bif
cation, which is the reference point for the bifurcation d
grams, could be reproduced to within the pickup noise~0.3
mm! of the interferometer

The experimental oscillator differs from a simple ha
monic oscillator with two degrees of freedom in the sen
that it is a continuous system, so that many modes may
excited~transverse modes as well as torsional ones!, where
each mode has its own characteristic resonance frequ
and damping coefficient. In addition, the relation betwe
the deflection of the beam and the restoring force may
nonlinear due to its peculiar, albeit useful, geometry. We w
nevertheless describe the oscillator with just three par
eters, namely, the eigenfrequency of the undriven beam
damping, and the restitution coefficient. An extension with
fourth parameter describing the resilience of the cont
upon collision will be considered briefly.

Assuming that the beam response is represented by
~1!, the periodT and the damping coefficientl can be mea-
sured in a straightforward manner from the decaying osci
tions of the unexcited beam,

x~ t !;e2lt cos~2pt/T1f!. ~16!

The parametersn and V2 in Eqs. ~3! and ~4! then follow
trivially as

n5
2l

f
and V25S 2p

j D 2

1
n2

4
,

with the parameters of the impact mapping
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g5e2n and a52g1/2cosS 2p

j D
in terms of the reduced driving frequencyj5 f T with f the
physical driving frequency. The damped oscillations a
measured by suddenly switching off the exciter when
beam is in a stationary, nonimpacting orbit that nearly h
the constraint. The instantaneous position of the beam
measured with a sample frequency of 6 kHz during 2.33

After subtraction of the equilibrium position, the period
the oscillations is found from the zero crossings of the sign
which are determined precisely by~linear! interpolation. Fig-
ure 4 shows a typical result for the period lengths. The ti
increments are observed to decrease with the amplitud
the decaying oscillation, indicating a weak nonlinearity
the beam. Because grazing impact dynamics correspond
large beam deflections, we take theeffectiveperiodT of free
oscillations as the extrapolation of the time increments
Fig. 4 to time 0. This givesT541.41 ms.

The coefficient of dampingl is found from the maxima
and minima of the measured relaxation curve. The value
each extreme is computed by fitting a parabola to the 17
points that lie symmetrically around it. In Fig. 5 these valu
are plotted versus time. The damping coefficient is fou
from the exponential decay,l51.78060.005 s21.

We will describe the collisions in our experiment by th
coefficient of restitution model, which assumes that at imp
the oscillator rebounds with a reduced velocity. The ene
loss at impact is expressed by the coefficient of restitution
vc is the collision velocity, the rebound velocity is2rvc ,
with 0<r<1. This is an admittedly crude description. In o
case the energy dissipation at impact is caused by the e
tation of many high-order modes which are quickly damp
for example, by the radiation of sound. We therefore int
pret r as aneffectivecoefficient of restitution, which may
differ from the one associated with collisions between a
ramic ball and hardened steel.

FIG. 4. Dots: duration of successive periods in a measured
caying oscillation. Each period length is measured from three s
cessive zero crossings of the signal. The full line is a linear fit
intersects the time axis at 41.41 ms, which we take as the perio
the beam. Inset: decaying oscillation from which both the per
and damping constant~in Fig. 5 below! were measured.
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Figure 6 shows a typical time trace of the deflection of
undriven beam that was released from such a height that
about half an oscillation a single impact occurred. It is ob
ous that a multitude of higher-order modes is excited up
impact. An estimate of the effective coefficient of restitutio
was reached as follows. At long times, when the higher-or
modes have damped out, it is possible to represent the
with Eq. ~16! and determine the phase in a least squa
procedure. The resulting expression forx(t) can then be ex-
trapolated back to the instant of impact. From Fig. 6 it
clear that the impact occurs very close to the turning poin
the extrapolated solution. We therefore conclude that the
efficient of restitution is close to 0 and we taker 50. Further
support for this effective value will be presented below. T
excitation of higher-order modes is caused by the deform
tion of the beam at impact. In the simple model of Fig. 1, th
is equivalent to a collision with a yielding wall. A simila
two-spring model for hard collisions was studied both e
perimentally and theoretically by Shaw@10#.

We study the dynamics of the impacting beam by me
of bifurcation diagrams in which the forcing amplitude
used as control parameter and the forcing frequency is k

e-
c-
t
of
d

FIG. 5. Dots: decay of the extrema of a measured damped
cillation shown in the inset of Fig. 4. Dashed line: fit of exponent
decay with decay constantl51.78 s21.

FIG. 6. Full line: time trace of the undriven beam which impac
at t50.13 s. Dashed line: fit of damped oscillations in the tim
interval 0.25,t,1.3 s where the secondary oscillations ha
damped out. The fit is extrapolated back to the instant of impac
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2036 PRE 62de WEGER, van de WATER, AND MOLENAAR
constant. A measurement of the bifurcation diagram
started at a small driving amplitude with the beam in a s
tionary, nonimpacting orbit. The driving amplitude is the
increased with small steps until the desired value is reac
As we are interested in hysteretic transitions, we make s
that the amplitude changes strictly monotonically. The s
size in the amplitude can be as small as 0.8mm, but it is
larger when performing scans over large amplitude interv
The oscillator is allowed to settle for approximately 1
forcing cycles during which the amplitude is maintained
its setpoint. Next, the beam deflection is registered for
proximately 80 driving cycles. The phase of this strob
scopic measurement relative to the sinusoidal forcing sig
is chosen such that the branches of the subharmonic o
that appear in the diagrams do not overlap. The amplitud
forcing is increased up to approximately 10% above the
citation amplitude of the first grazing bifurcation. It is su
sequently decreased until the impacting motion disapp
and the oscillator settles in a nonimpacting orbit, which m
be at an excitation amplitude well below the excitation a
plitude of the first grazing collision.

III. EXPERIMENTAL RESULTS

An overview of measured period-adding transitio
p1↔pM from the nonimpacting state to maximal period
orbits with periodM53 to 10 is shown in Fig. 7. For in

FIG. 7. Experimental bifurcation diagrams ofp1↔pM transi-
tions with M53,4,5,6,8,10 for~a! through ~f!, respectively. The
closed dots are for the upward scan of the excitation amplitude
open circles are for the downward scan. For this experiment
period of the free swinging beam isT540.8060.02 ms and damp-
ing l52.160.05 s21. The excitation frequencies aref 520.90,
21.50, 22.20, 22.60, 23.05, and 23.40 Hz for~a! through~f!, respec-
tively.
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creasing period lengths, the scale of the driving amplitu
scan rapidly diminishes. The highest observed per
(pM510) is at the limit of our experimental resolution an
stability. For this figure the~reduced! excitation frequencyj
is set somewhere in the intervalj2,j,j3 @Figs. 2~a! and
2~b!# so that the transition atr50 is alwaysp1→pM . As
can also be observed, the apparent hysteresis may
wildly. In all cases the amplitude scans stop before
period-M maximal orbit loses stability through an addition
impact and becomes a period-M orbit with two impacts
(pM /2).

The transitionpM→pM /2 is found from the time traces o
the recorded spring deflection. It gives rise to the charac
istic jump in the bifurcation diagram which is illustrated fo

FIG. 8. The grazing bifurcation of a maximalpM orbit into a
pM /2 orbit ~two impacts per period! at the vertical dashed line is
clearly observed in the bifurcation diagram as a sharp change in
of the measured positions ats'0.042 in the upward scan ofs. The
excitation frequency isf 521.35 Hz.

FIG. 9. Open circles: measured boundaries of stability tong
of maximal period-M orbits, whereM52 – 7. At the lower bound-
ary the transitionpM→p1 is observed in a downward scan ofs. At
the upper boundary a second impactpM→pM /2 occurs. The mea-
sured upper and lower boundary points for eachPM tongue are
connected by dashed lines. Full lines: tongues as computed from
differential equation forT1541.5 ms,l51.78 s21, andr 50.
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PRE 62 2037GRAZING IMPACT OSCILLATIONS
the p4→p4/2 transition in Fig. 8. The additional impact oc
curs at the turning point that immediately precedes the
mary impact, as this turning point is closest to the wall.
the bifurcation, the motion between these two impa
changes most, and the change in the corresponding str
scopic branch of the bifurcation diagram is largest. The ot
branches are affected less as they are registered afte
relatively hard primary impact.

In Fig. 9 the measured hysteresis and secondary bifu
tion of the maximal periodic orbits are compared with t
stability tongues computed from the differential equati
Eqs. ~3! and ~4!. In the computation we have used the p
rameter valuesT541.5 ms,l51.78 s21, and r 50. The pe-
riod of free vibrationsT541.5 ms is chosen slightly large
than the period (T541.41 ms) that was measured from t
decaying oscillations. In this way the frequency windows
which the maximal orbits are observed fit well with the pr
dicted ranges. The frequency where the computed max
orbits M52,3 . . . arefound depends strongly on the usedT
of the model. The damping constantl51.78 s21 is taken
from the relaxation measurements. The width of the stab
tongues depends very sensitively on the restitution coe
cient r. The tongues shrink to zero width asr→1. The best
fit between the theory and experiment was obtained for
50, which agrees with the effective value ofr that was es-
timated from time traces of impacting orbits in Sec. II. T
conclusion is that the observed bifurcation sequence ca
reproduced well using only three parameters to describe
experiment. We emphasize that we view these paramete
effective values, reflecting the influence of higher-ord
modes that are excited at impact.

The experimentally observed dynamics in the vicinity
the first grazing bifurcation and beyond is summarized
Figs. 10 and 11. The windows in which maximal period
orbitspM are found cover a large part of parameter space
have a similar shape forM54 – 7 ~theM52 and 3 windows
are only partly measured!, whereas their size decreases wh
M increases. The upper boundary due to a second im
meets the lower boundary at the low-frequency side of
maximalM-periodic stability tongue. The very tip is not a

FIG. 10. Measured bifurcation diagrams near maximal perio
orbits withM52,3. The diagram is composed from amplitude sca
at discrete frequencies. The dots at the largests are the maximal
amplitude in each scan. The black regions are stability tongue
maximalpM orbits; the gray regions are chaotic states.
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ways resolved in the experiment. The tip can extend as m
as 10% below the driving amplitude where impacts first o
cur in a smooth upward scan ofs. Figures 10 and 11 also
illustrate that the boundaries of the regions of maximal pe
odic orbits are slightly more complicated than was stated
far. The simultaneous creation of a pair of stable and
stableM-cycles~and the associated hysteresis! occurs fors
<0 (j<j3 in Fig. 2!. For scaled frequenciesj.j3 there is
often a transition to chaos ats50 which yields to the
M-cycle at some positive value ofs. Of course, this part of
the boundary was missed in the computed stability diagra

The occurrence of an additional collision for increasings,
which signifies the upper boundary of the stability tongu
can either lead to apM /2 orbit ~at the low-frequency side o
the tongue! or turn directly into chaos at the high-frequenc
side. When the driving amplitude is further increased,
pM /2 orbit changes into chaos. The regions in thej,s param-
eter plane where thepM /2 orbit is found form a geometrically
converging sequence forM54 – 7, analogous to the stabilit
tongues of the maximalpM orbits.

Chaotic motion is observed between maximal orbits a
can also be hysteretic. For example, atf 521.35 Hz an
M54 maximal periodic orbit bifurcates to chaos via apM /2
orbit in the upward scan ofs, whereas in the downward sca
the chaotic motion bifurcates directly into thepM orbit. Ap-
parently, a chaotic attractor and a periodic orbit coexist
some regions of parameter space, and it depends on how
region is approached, and possibly on the level of mech
cal disturbances, on which attractor the oscillator will set

In order to further illustrate the richness of the bifurcati
structure near grazing, we present in Figs. 12 and 13 m
sured bifurcation plots at a driving frequencyf 521.60 and
21.97 Hz, respectively. We contrast the measured bifur
tions with the results of numerical simulations. The freque
cies correspond to the transitionspM55→p1 and pM56
→p1 , respectively. However, in the latter case these ma
mal periodic orbits cannot be reached through smooth sc
of the driving amplitude and it is necessary to disturb t
oscillator. In Fig. 12 the first impacting state encountered
s50 is theM5 5

2 maximal orbit, with two impacts per pe
riod. This state turns into chaos at largers, which yields to

c
s

of

FIG. 11. Measured bifurcation diagrams near maximal perio
orbits with M53 – 7. The diagram is composed from amplitud
scans at discrete frequencies. The dots at the largests are the maxi-
mal amplitude in each scan. The black regions are stability tong
of maximalpM orbits; the gray regions are chaotic states.
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2038 PRE 62de WEGER, van de WATER, AND MOLENAAR
the M54 periodic orbit. TheM55 state and thep5→p1
transition are reached only on the downward scan, once
upper boundary due to second impacts has been pass
s520.18. Both experiment and numerical simulation d
play the same course of events, but fine details in the si
lation for sP@20.006,0.0035# remain unresolved in the ex
periment. Of course, the shape of the phase diagram is
determined by the stroboscopic phase, which cannot be c
pared for the two cases.

Starting from the nonimpacting state in Fig. 13, a smo
upward scan of the driving amplitude leads to the small c
otic attractor ats50, which in turn is followed by an
M55 maximal periodic orbit and chaos. In the subsequ
downward scan, the nonimpacting state is reached aga
s50. The maximalM56 periodic orbit with the chaotic
attractor to which it bifurcates through a second impact
be reached only by hitting the oscillator. Exactly the sa
phenomenon is found in the numerical bifurcation diagra
where the hit is done by settingx to a large value. The
overall structure of the computed diagram is very similar

FIG. 12. Bifurcation diagrams of the impact oscillator at a dr
ing frequencyf 521.60 Hz.~a! Measured diagram. The dashed lin
indicates thep4→p4/2 transition. ~b! Computed bifurcation dia-
gram. The first impacting state encountered ats50 is the M
55/2 maximal orbit, with two impacts per period. This state tur
into chaos at largers, which yields to theM54 periodic orbit. The
M55 state and thep5→p1 transition are reached only on th
downward scan, once the upper boundary due to second imp
has been passed ats520.18.
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the experimental one. Both experiment and simulation h
the disconnectedpM56 and chaotic states ats,0; they
share thepM55 orbit followed by a large region of chaos an
thepM54 cycle. Details differ, however, especially the stru
ture of the large chaotic state ats.0.043. We conclude tha
the richness of the observed bifurcations near grazing is q
well captured by the numerical simulation, which models t
experiment with only three~effective! parameters.

We emphasize that our experiment is far from ideal
many high-order modes are excited upon impact. App
ently, transitions near grazing orbits are forgiving about t
nonideality. A possible explanation is the presence of lo
time delays between subsequent impacts, which get longe
M increases. This lets higher modes damp out. For states
have a more rapid succession of impacts, for example,pM /2
periodic states, we found larger discrepancies between m
sured and computed bifurcation diagrams. In these case
time for higher modes to decay is shorter. We conclude t
grazing bifurcations are not sensitive to experimental de
and are therefore auniversalphenomenon.

cts

FIG. 13. Bifurcation diagrams of the impact oscillator at a dr
ing frequencyf 521.97 Hz.~a! Experiment. In the upward scan o
the driving amplitude the statesp5/1, chaos, andp4/1 are encoun-
tered; in the downward scan the sequence isp4/1, chaos,p5/1,
chaos,p6/2. ~b! Computed bifurcation diagram with a similar se
quence of states as observed in the experiment. In the experi
the impacting states at negatives could be reached only by hitting
the oscillator; in the numerical simulation this was done by s
denly settingx to a large value.
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IV. TESTING GRAZING IMPACT MAPS

The power of grazing impact maps is the reduction
grazing dynamics to the application of a map. A key feat
of these mappings is the presence of a square-root sing
ity. It was shown by us that such a singularity survives s
impacts with a yielding wall@7#.

The details of these mappings, in particular the relation
their coefficients to the parameters of the physical sys
and the relation between the bifurcation parameterr and the
reduced driving amplitudes, depend on the details of th
analysis of grazing orbits in the differential equation. Th
analysis is not a trivial task. Therefore, it is interesting
make a quantitative comparison between the prediction
mappings and the solutions of the differential equation.
will make this comparison for the stability tongues of t
sequence of maximal periodic orbits that was also stud
experimentally. In our comparison we have not exhaustiv
scanned parameter space, but instead have used the ph
parameters of the experiment (T541.5 ms,l51.78 s21, r
50). The predictions of the soft map will be tested agai
the differential equation usingG510 andr 50.5.

Finding the stability tongues in the maps was done i
simple numerical scheme using Eq.~15!. Once the stable
impacting root at the lower boundaryr52rM of the reso-
nance tongue is located, it is followed for increasingr until a
second collision at iterateM21 occurs. The upper boundar
can then be determined accurately using a zero finding
cedure. We have used a similar procedure for finding
stability boundaries of the resonance tongues of the diffe
tial equation Eq.~3!. When collisions are with a stiff wall, a
simple analytical expression exists for the lower bound
@13#. The upper boundary was found analogously to tha
the map. For tracing the stability boundaries of maxim
M-periodic orbits in the differential equation for the so
wall, we have not sought analytical solutions but determin
the boundaries in an experimental fashion by using am
tude scans at many frequencies. In all cases the stab
boundaries are expressed in terms of thereduceddriving
strengths, which is the relevant physical variable.

A comparison between the maximalM-periodic stability
tongues computed from the Nordmark map Eqs.~5!,~6! and
those computed directly from the differential equation E
~3! is shown for hard collisions in Fig. 14~a!. The Nordmark
map predicts the lower boundary of the stability tongu
quite well, but it grossly overestimates the driving amplitu
at which the additional impact occurs. The comparison w
the map derived by us@Eqs. ~10!,~11!# is shown in Fig.
14~b!. At the used valuer 50, a more favorable agreeme
with the differential equation is found.

We have argued that for increasing periodM the condi-
tions for deriving maps become increasingly favorable, a
the agreement between the map and the differential equa
result should improve. This is observed for the map E
~10!,~11!, but not for the Nordmark map Eqs.~5!,~6!. Most
probably this difference is caused by the term proportiona
xn in Eq. ~10!, wich is absent in the Nordmark map. F
increasing restitution coefficientr the width of the tongues in
the differential equation becomes small, but the map E
~10!,~11! predicts that tongues withM,M̃ disappear alto-
gether (M̃'4 for r 50.5). This is in obvious disagreeme
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with the tongues computed from the differential equation E
~3!. Clearly, in some regions of parameter space the m
pings are closer to the original dynamics than in other
gions.

Maximal periodic resonance tongues for collisions with
yielding wall are shown in Fig. 15. In this case the Nordma
map does not apply, and we compare the prediction of
map Eqs.~10!,~11! with the result of the numerical simula
tion of Eq. ~3!. The parameters used areT541.50 ms,l
51.78 s21, and r 50.5, andG510. We have not used so
phisticated path following techniques, but the boundaries
theM-periodic resonance tongues in the differential equat
were found from simple scans of the driving amplitud
much as in the experiment.

The question of whether a map is soft or hard depends
the parameterb5rvcG

1/2V/4p2. Soft collisions are the cas
if b!1, and the map Eqs.~10!,~11! with the substitutionr
→2r applies. Hard collisions are the case ifb@1 and the
map remains unchanged. The map Eqs.~10!,~11! does not
apply in intermediate cases, so collisions must be either h
or soft. The problem is that in a scan of the bifurcation d
gram from small to largeM, the impact velocityvc decreases
and collisions may turn from hard to soft. Let us suppose t

FIG. 14. Comparison of stability tongues of maximal period
orbits in the mapping and the differential equation. The parame
used areT541.50 ms, l51.78 s21, and r 50. Shown are the
tongues withM52 ~leftmost! to M510 ~rightmost!. ~a! Dotted
line: stability boundaries computed from the Nordmark map E
~5!,~6!. Full line: as computed from the differential equation Eq.~3!.
~b! Same as~a!, but now the dotted line is the prediction of a ma
that was derived by us@Eqs.~10!,~11!#. The upper boundary of the
M52 tongue is missed in this map.
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2040 PRE 62de WEGER, van de WATER, AND MOLENAAR
during a collision only the force between the wall and t
mass changes and that the other forces remain cons
Then, for soft impacts the time of residenceDt in the wall is
a linear function of the collision velocity and it is a consta
for hard collisions.

Figure 16 shows the dependence of the time delayDt on
the collision velocityvc for two scaled frequencies, one (j
50.805) near a low-order resonance (M53) in Fig. 15, the
other one (j50.95) nearM510. The time delays were reg
istered while scanning a bifurcation diagram. Clearly,
M53 tongue is not yet soft, so the soft map does not stric
apply here and the discrepancy between the stability bou
aries of the map and the differential equation is largest.

The tongues that were computed from the soft imp

FIG. 15. Comparison of stability tongues of maximal period
orbits in the mapping and the differential equation for collisio
with a yielding wall. The parameters used areT541.50 ms, l
51.78 s21, and r 50.5. Shown are the tongues withM52 ~left-
most! to M510 ~rightmost!. Dotted line: prediction of the map Eqs
~10!,~11! for soft collisions with a soft wall~with the changer
→2r ). The symbols are computed from the differential equat
Eq. ~3! with G510. Open circles: lower boundary of resonan
tongues. Closed dots: upper boundary.

FIG. 16. Time delay experienced in a collision with a soft w
as a function of the collision velocity. Closed dots: scaled freque
j50.85 near aM53 maximal periodic orbit. Open circles:j
50.95 nearM510. Soft collisions are the case ifDt depends lin-
early onvc ; this is apparently not yet the case near theM53 orbit.
nt.

t

e
y
d-

t

map Eqs.~10!,~11! display ‘‘overhang:’’ at some driving fre-
quencies bothM and M21 periods are stable, with theM
21 tongue hanging over theM tongue. In these cases th
M-periodic cycles are inaccessible in experiments where
excitation amplitude is smoothly varied. Therefore, the ov
hangs are not completely resolved in the numerical simu
tion of the differential equation~where stability boundaries
were found ‘‘experimentally’’!. The agreement between th
tongues computed from the soft map and those compu
from the differential equation is quite reasonable.

At large driving amplitudes where we find orbits far b
yond grazing ones, the validity of the maps is obvious
challenged. Still, the general bifurcation structure is rep
duced remarkably well by maps. Figure 17 shows iterate
the map Eqs.~10!,~11! for collisions with a hard wall at a
driving frequencyf 521.60 Hz. The map displays a simila
sequence of states as the differential equation in Fig. 12.
increasings we find in both cases a period-10 orbit ats
50, followed by a period-5 cycle, chaos, and a period
orbit; with of course at negatives thep5→p1 transition. For
large driving strengths a shift ins is apparent. For the pa
rameters used, the Nordmark map Eqs.~5!,~6! predicts a sce-
nario that qualitatively disagrees with both experiment a
differential equation.

We have modeled the experiment with an effective re
tution coefficientr 50. For such completely dissipative co
lisions, the wall resilience, of course, does not matter. T
question is if the experiment can be modeled using a larger,
which is more realistic for the instantaneous collision, b
allowing for a finite wall stiffness. We recall that the ma
reason to chooser 50 is to match the width of the compute
M-tongues in Fig. 9 with those of the experiment. At largerr,
the tongues become too narrow, but this can be cured
allowing for a finite wall stiffness. Our preliminary conclu
sion is that this procedure does not lead to satisfactory ag
ment with the experiment. Soft impacts result in a bifurc
tion diagram that is essentially different from hard collision
for example, in comparison with Fig. 14, the resonan

y

FIG. 17. Bifurcation diagram of the map Eqs.~10!,~11! for hard
collisions at a driving frequencyf 521.60 Hz (j50.8964). At s
'20.014 the transitionp5→p1 can be observed. The structure
the diagram can be compared to Fig. 12 as it displays the s
sequence of states, but we point out a change of the horizo
scale.
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PRE 62 2041GRAZING IMPACT OSCILLATIONS
tongues of soft collisions in Fig. 15 have been shifted
lower frequencies.

V. CONCLUSION

Grazing impact bifurcations are the consequence o
square-root singularity. We have demonstrated that an
periment, despite its nonidealities, can be effectively m
eled as a singular system. We have indicated why these
idealities, such as the multimode character of impacts, do
spoil such a description. Because of this singularity, and
associated strong distortion of phase space, low-velocity
pacts may lead to richer dynamics than hard collisio
@14,15#.

In the context of maps we have shown explicitly that t
square root also survives soft impacts with a soft wall. In t
case it is essential to allow for a discontinuity in terms o
.
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restitution coefficientr ,1. For perfectly elastic soft colli-
sions with a soft wall, however, the square root vanishes
collisions need to become hard again to restore it. It is the
fore necessary to consider more realistic impact models.
interesting testing ground would be collisions on a mes
copic scale in atomic force microscopy@16#. Such atomic
impact oscillators will be studied in a forthcoming public
tion.
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